ECSE 324 Midterm
Winter 2022
ECSE 324 Winter 2022 Midterm

Part A: Choose wisely

Part A.1: Multiple select. Choose as many options are as appropriate for each question. Select I don’t know for 1/4 credit.

1. Which of the following bits or signals are needed to determine whether overflow has occurred when performing ADD R0, R1, R2?
a. Most significant bit of R0
b. Most significant bit of R1
c. Most significant bit of R2
d. Carry out
e. I don’t know

2. Which of the following addresses are appropriate for half-word aligned memory accesses?
a. 0x0DDBA115
b. 0xB01DFACE
c. 0xDEADBEA7
d. 0xDABADABA
e. I don’t know

3. Which sequences of instructions are equivalent to LDR R2, [R0, R1, LSL#3]
a. MOV R3, #8
MUL R3, R1, R3
ADD R4, R0, R3
LDR R2, [R4]
b. MOV R3, #3
MUL R3, R1, R3
ADD R4, R0, R3
LDR R2, [R4]
c. LSL R3, R1, #3
ADD R4, R0, R3
LDR R2, [R4]
d. MOV R3, #8
MUL R3, R1, R3
LDR R2, [R0, R3]
e. I don’t know

4. When is the offset for the BGT instruction below calculated?
a. Compilation
b. Assembler pass #1
c. Assembler pass #2
d. Linking
e. I don’t know

dotpLoop:	
	LDR 	V2, [A1], #4	// get vectorA[i] and post-increment
	LDR	V3, [A2], #4	// get vectorB[i] and post-increment
	MLA	V1, V2, V3, V1	// V1 += V2*V3
	SUBS	A3, A3, #1		// i-- and set condition flags
	BGT	dotpLoop

5. Which of the following instructions set Z=1 in the CPSR, given R0=0xBEEFCAFE and R1=0x41103502?
a. TST R0, #0xFC000
b. TST R1, #0xFC000
c. SUB R2, R0, R0
d. ADDS R2, R0, R1
e. I don’t know

Part A.2: Matching. Select the appropriate option for each part of each question, or match any option to I don’t know for 1/4 credit.

6. What is the value in each register after the following code is executed? (i) 0x4000, (ii) 0x4010, (iii) 0x1FF00, (iv) 0x1FF04.
a. R0 (i: 0x4000)
b. R1 (iv: 0x1FF04)

0x1FF00 kbd: .word 0x00004000 // keyboard base address
0x1FF04 disp: .word 0x00004010 // display base address
0x1FF08 _start:
LDR R0, kbd
0x1FF0C	LDR R1, =disp

7. [bookmark: OLE_LINK1][bookmark: OLE_LINK2]An interrupt service routine uses A2 and V1 and no other registers. When will each of the following registers be pushed onto the stack? (i) Before the ISR begins, during context saving initiated by interrupt hardware; (ii) During the ISR, in accordance with the ARM APCS; (iii) Never, because it is not necessary.
a. PC (i: before)
b. A2 (i: before)
c. V1 (ii: during)
d. R5 (iii: never)

Part A.3: Short answer. Write I don’t know for 1/4 credit.

8. Assume a 32-bit big endian RISC computer, and memory contents defined in the table below. If
· R0 = 0x0000 0004,
· R1 = 0x0000 0002
· R2 = 0x0010 0010
what is in R2 after: LDRSH R2, [R0, R1]! ? Give your answer in hexadecimal.

0x0000 4FEE

9. How many times is memory accessed during a single iteration of the following loop (the five instructions from dotpLoop to BGT, inclusive)?

dotpLoop:	
	LDR 	V2, [A1], #4	// get vectorA[i] and post-increment
	LDR	V3, [A2], #4	// get vectorB[i] and post-increment
	MLA	V1, V2, V3, V1	// V1 += V2*V3
	SUBS	A3, A3, #1		// i-- and set condition flags
	BGT	dotpLoop

	Seven times—five instructions are fetched, and two are data memory accesses.

10. Why isn’t there a store instruction equivalent to LDRSH?

The S in LDRSH indicates sign extension. When storing a half word to memory, the lower two bytes of the register are written to two bytes in memory; there are no additional bytes to be modified, no place to extend the sign to, no empty space to be filled in which the sign of the number must be preserved.

	Addr
	Data
	
	Addr
	Data

	0x00
	0xD1
	
	0x08
	0x78

	0x01
	0x4B
	
	0x09
	0x91

	0x02
	0x45
	
	0x0A
	0x03

	0x03
	0xC4
	
	0x0B
	0x70

	0x04
	0x90
	
	0x0C
	0xB3

	0x05
	0x12
	
	0x0D
	0xDA

	0x06
	0x4F
	
	0x0E
	0x7F

	0x07
	0xEE
	
	0x0F
	0xE6

Part B: It’s a bit RISC-y

Assume an 8-bit RISC CPU with four general-purpose registers R0-R3, working scratch register WS, program counter PC, and current program status register CPSR.

The only available instructions are:

· LD	Rm, Rs	 // WS <- Mem[Rm+Rs]
· ST	Rm, Rs	 // Mem[Rm+Rs] <- WS
· MVW	Rm			// WS <- Rm
· MWV	Rd			// Rd <- WS
· MVI	#Imm			// WS <- #Imm
· ADD	Rm			// WS <- WS + Rm
· CMP	Rm			// If (WS – Rm == 0), set Z flag to 1
· B	displacement	// PC <- PC + displacement

Assume that when instruction i at address 0xn is executing, PC points to 0xn+1.

Each instruction can be conditionally executed (when Z==1), based on a 1-bit condition field in each instruction, indicated by adding the EQ suffix to an instruction.

Select or write I don’t know below for 1/4 credit.

What is the minimum number of bits required to encode a register operand?
· 1 bit
· 2 bits
· 3 bits
· 4 bits
· None of these
· I don’t know

What is the maximum number of bits available to encode the immediate value for MVI?
· 2 bits
· 3 bits
· 4 bits
· 5 bits
· None of these
· I don’t know

How many instructions can be stored in the memory addressable by this CPU?
· 32
· 64
· 128
· 256
· None of these
· I don’t know

Suppose we want to implement a pseudo-instruction, DBL Rd, which implements Rd <- WS*2. Write a sequence of instructions to implement this pseudo-instruction.

MWV Rd // Rd <- WS
ADD Rd // WS <- WS + Rd
MWV Rd // Rd <- WS

Attempting to assemble the following code will result in an error. What is the problem?

Loop:
 CMP R0
 BEQ Done
 MWV R1
 MVI #1
 ADD R1
 MWV R1
 LD R2, R1
 ST R3, R1
 MVW R1
 B Loop
Done:
 B Done

The problem is that the maximum displacement of a branch instruction is +7/-8. Done is too far away from BEQ, at (PC+1)+8. Loop is too far away from B, at (PC+1)-10.

Part C: They’re multiplying!

Fill in the blanks below to complete the following ARMv7 assembly to implement a function that performs matrix-vector multiplication using a help function that performs vector-vector multiplication. Write I don’t know in any blank for 1/4 credit.

Assume the following C function prototypes:

// takes pointers to two vectors of size length, and saves their dot-
// product at the address pointed to by result
void vvm(char* vectorA, char* vectorB, char* result, int length);

// takes pointers to a square matrix and a vector of size length, and
// saves their product starting at the address pointed to by result
void mmm(char* vectorA, char* vectorB, char* result, int length);

Further assume:
· Functions must respect the ARM APCS.

// void vvm(char *vectorA, char *vectorB, char *result, int length)
vvm:
	PUSH	{V1-V4}
	MOV	V1, #0
	MOV	V2, #0
vvmLoop:
	CMP	V1, A4
	BEQ	vvmRet
	LDRSB	V3, [A1], #1		// (1)
	LDRSB	V4, [A2], #1		// (2)
	MLA 	V2, V3, V4, V2
	ADD	V1, V1, #1
	B	vvmLoop		// (3)
vvmRet:
	STRB	V2, [A3], #1
	POP	{V1-V4}		// (4)
	BX 	LR			// (5)

// void mmm(char *matrix, char *vector, char *result, int length)
mmm:
	PUSH	{V1, LR}		// (6)	
	MOV	V1, #0
mmmLoop:
	CMP	V1, A4			// (7)
	BEQ	mmmRet			// (8)
	BL	vvm			// (9)
	ADD	V1, V1, #1
	SUB	A2, A2, A4		// (10)
	B	mmmLoop
mmmRet:
	POP	{V1, PC}

1
